Abstract

The strength of the direct effect by scraping cladocerans and the indirect effect of nutrient regeneration by filtering herbivorous cladocerans on periphyton growth was investigated in a littoral food web. Ten enclosures were erected in a lake in an area with artificial vegetation. Five enclosures were stocked with juvenile perch (Percafluviatilis) and five lacked fish. In addition, a reference area in the artificial vegetation was sampled. The mesh size of the net surrounding the cages was chosen to allow an inflow of phytoplankton into the cages from the surrounding water. The periphyton and filtering herbivorous cladoceran biomasses were highest in the fish‐free treatment. There was no difference in phytoplankton biomass between treatments despite the large difference in filtering herbivorous cladoceran biomass, suggesting that the inflow of phytoplankton into enclosures completely compensated for the loss due to filtering. The reference area and the enclosure with fish showed the same patterns in developments with respect to filtering herbivorous cladocerans and periphyton. Scraping cladoceran biomass was higher in the fish‐free treatment resulting in a positive correlation between scraping cladoceran and periphyton biomass. Our results suggest that the positive indirect effect of filtering herbivorous cladoceran nutrient regeneration on periphyton was stronger than the negative direct effect of grazing by scraping cladocerans on periphyton in this semi‐open system, and that pelagic production by phytoplankton may foster periphyton growth in the littoral habitat via filtering herbivorous cladocerans. Furthermore, heterogeneity within trophic levels involving primary producers of different growth forms such as phytoplankton and periphyton may enhance the potential for compensatory responses via nutrient recycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.