Abstract

Fishing can induce evolutionary changes in individual life history traits, leading to fish that mature smaller and younger and with larger gonads, so that they reproduce more intensely. The steepness of a stock–recruitment relationship is commonly defined as the fraction of recruitment of an unfished population obtained when the spawning stock biomass is 20% of its unfished level. We use a model of harvest-induced evolutionary change to understand how the steepness of the stock–recruitment relationship changes due to fishing. If the true spawning stock biomass is known, the stock–recruitment relationship changes little under fishing-induced evolution and there is little concern for fisheries management. When management is based on a total biomass – recruitment relationship, recruitment may be underestimated, which is also of little concern from a sustainability perspective. However, when the number of spawners – recruitment relationship is used to forecast recruitment, management practice that ignores the evolution of steepness may overestimate recruitment and therefore recommend catches that exceed safe biological limits. Using outdated maturity ogives underestimates spawning stock biomass, which results in steeper and higher stock–recruitment relationships as life histories evolve. Although of little concern for sustainability, this may pose challenges for practical fisheries management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.