Abstract

Univariate decision trees are classifiers currently used in many data mining applications. This classifier discovers partitions in the input space via hyperplanes that are orthogonal to the axes of attributes, producing a model that can be understood by human experts. One disadvantage of univariate decision trees is that they produce complex and inaccurate models when decision boundaries are not orthogonal to axes. In this paper we introduce the Fisher’s Tree, it is a classifier that takes advantage of dimensionality reduction of Fisher’s linear discriminant and uses the decomposition strategy of decision trees, to come up with an oblique decision tree. Our proposal generates an artificial attribute that is used to split the data in a recursive way.The Fisher’s decision tree induces oblique trees whose accuracy, size, number of leaves and training time are competitive with respect to other decision trees reported in the literature. We use more than ten public available data sets to demonstrate the effectiveness of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.