Abstract
One approach to improve the accuracy of classifications based on generative models is to combine them with successful discriminative algorithms. Fisher kernels were developed to combine generative models with a currently very popular class of learning algorithms, kernel methods. Empirically, the combination of hidden Markov models with support vector machines has shown promising results. So far, however, Fisher kernels have only been considered for sequences over flat alphabets. This is mostly due to the lack of a method for computing the gradient of a generative model over structured sequences. In this paper, we show how to compute the gradient of logical hidden Markov models, which allow for the modelling of logical sequences, i.e., sequences over an alphabet of logical atoms. Experiments show a considerable improvement over results achieved without Fisher kernels for logical sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.