Abstract

We develop data processing inequalities that describe how Fisher information from statistical samples can scale with the privacy parameter ε under local differential privacy constraints. These bounds are valid under general conditions on the distribution of the score of the statistical model, and they elucidate under which conditions the dependence on ε is linear, quadratic, or exponential. We show how these inequalities imply order-optimal lower bounds for private estimation for both the Gaussian location model and discrete distribution estimation for all levels of privacy ε >0. We further apply these inequalities to sparse Bernoulli models and demonstrate privacy mechanisms and estimators with order-matching squared ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.