Abstract
A complete Riemannian manifold X with negative curvature satisfying − b 2 ⩽ K X ⩽ − a 2 < 0 for some constants a , b , is naturally mapped in the space of probability measures on the ideal boundary ∂ X by assigning the Poisson kernels. We show that this map is embedding and the pull-back metric of the Fisher information metric by this embedding coincides with the original metric of X up to constant provided X is a rank one symmetric space of non-compact type. Furthermore, we give a geometric meaning of the embedding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.