Abstract

Owing to its high quantum efficiency, the charge-coupled device (CCD) is an important imaging tool employed in biological applications such as single molecule microscopy. Under extremely low light conditions, however, a CCD is generally unsuitable because its readout noise can easily overwhelm the weak signal. Instead, an electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the acquired signal to drown out the readout noise, can be used. We have previously proposed a framework for calculating the Fisher information, and hence the Cramer-Rao lower bound, for estimating parameters (e.g., single molecule location) from the images produced by an optical microscope. Here, we develop the theory that is needed for deriving, within this framework, performance measures pertaining to the estimation of parameters from an EMCCD image. Our results allow the comparison of a CCD and an EMCCD in terms of the best accuracy with which parameters can be estimated from their acquired images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.