Abstract
In this paper, a Fisher information analysis is employed to establish some important physical performance bounds in microwave tomography. As a canonical problem, the two-dimensional electromagnetic inverse problem of imaging a cylinder with isotropic dielectric losses is considered. A fixed resolution is analysed by introducing a finite basis, i.e., pixels representing the material properties. The corresponding Cramér–Rao bound for estimating the pixel values is computed based on a calculation of the sensitivity field which is obtained by differentiating the observed field with respect to the estimated parameter. An optimum trade-off between the accuracy and the resolution is defined based on the Cramér–Rao bound, and its application to assess a practical resolution limit in the inverse problem is discussed. Numerical examples are included to illustrate how the Fisher information analysis can be used to investigate the significance of measurement distance, operating frequency and losses in the canonical tomography set-up.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.