Read

Fish Species Recognition from Video using SVM Classifier

Publication Date Jan 1, 2014

Abstract

To build a detailed knowledge of the biodiversity, the geographical distribution and the evolution of the alive species is essential for a sustainable development and the preservation of this biodiversity. Massive databases of underwater video surveillance have been recently made available for supporting designing algorithms targeting the identification of fishes. However these video datasets are rather poor in terms of video resolution, pretty challenging regarding both the natural phenomena to be considered such as murky water, seaweed moving the water current, etc, and the huge amount of data to be processed. We have designed a processing chain based on background segmentation, selection keypoints with an adaptive scale, description with OpponentSift and learning of each species by a binary linear Support Vector Machines classifier. Our algorithm has been evaluated in the context of our participation to the Fish task of the LifeCLEF2014 challenge. Compared to the baseline designed by the LifeCLEF challenge organizers, our approach reaches a better precision but a worse recall. Our performances in terms of species recognition (based only on the correctly detected bounding boxes) is comparable to the baseline, but our bounding boxes are often too large and our score is so penalized. Our results are thus really encouraging.

Concepts

Worse Recall Murky Water Background Segmentation Video Datasets Bounding Boxes Adaptive Scale Binary Support Vector Geographical Distribution Underwater Surveillance Binary Support

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.