Abstract

In this study, low-cost and eco-friendly hydroxyapatite (HA) minerals were extracted from scales of Tilapia fish (Oreochromis mossambicus). After calcination, fish-scale extracted powder was further confirmed to be HA by X-ray diffraction with mean particle size of 5.96 μm determined by particle size analyzer. The calcined powder was utilized as the raw material and combined with chitosan (CS) to synthesize composite scaffolds by freeze casting and cross-linking. Mercury porosimetry results showed that the scaffolds possessed hierarchical porous structure. Microstructural features characterized by SEM revealed unidirectional channel structures with channel sizes ranged from 10 to 100 μm and 1 to 50 μm for scaffolds freeze-casted at 2 ℃/min and 5 ℃/min cooling rates, respectively. The adsorption kinetics of HA/CS composite scaffolds with varying channel sizes were investigated by both batch and fixed-bed processes with different Pb(П) initial concentrations (100 and 1000 mg/L). The adsorption capability was optimized by tuning the cooling rates and the maximum adsorption amount could reach 75–570 mg/g in batch process and 94 mg/g in fixed bed process. In summary, the HA/CS composite scaffolds showed great capability to remove heavy metal ions from waste water and their tunable channel sizes could be applied in suitable fields under both statistic and flowing conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.