Abstract

Blood group analysis has evolved from conventional "test-tube" to ingenious "lab-on-a-chip" micro/paper-fluidic devices for identifying blood phenotypes. Despite the rapid and economical fabrication of these devices, they require Whatman paper that is obtained by cutting down trees and plastic usage involving complex and sophisticated facilities, making scalable manufacturing laborious and expensive. Most importantly, deforestation and plastic incineration pose great threats to the biotic and abiotic environments. Here, we have developed a blood grouping strip utilizing fish-scale waste and household cardboard-waste generated origami as an affordable and sustainable strategy. The naturally inherited hydrophilicity of fish scale with a contact angle of 89° could succinctly auto-stabilize low-volume antisera without the aid of additives. Moreover, unlike paperfluidics, antisera absorption, as well as RBC-antisera agglutination upon blood introduction, happens on the spot with no capillary wicking. The merits of our technique are: it requires a low amount of blood (3 μL), eliminates additional image processing and assays, is equipment-free, and aids accurate blood typing as a visual hemagglutination readout. Additionally, a high tensile strength of ∼85 ± 5 MPa and the shelf-endurance of the bio-disc allowed us to use the simplest cardboard origami as a shield, obviating plastic and fiber generated fancy shields, making our device portable and simultaneously biodegradable. Our novel bio-disc blood analysis was tested with anonymous blood samples (n = 200), with an accuracy comparable to a standard blood group assay. This zero-cost paper, plastic-free eco-friendly blood group analyser derived from biodegradable food and cardboard waste as a resourceful technique has huge potential in various sensors and point-of-care diagnostics, especially in impoverished areas with limited or no lab facilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.