Abstract

In the last decade, proteomic technologies have been increasingly used in fish biology research. Proteomics has been applied primarily to investigate the physiology, development biology and the impact of contaminants in fish model organisms, such as zebrafish (Danio rerio), as well as in some commercial species produced in aquaculture, mainly salmonids and cyprinids. However, the lack of previous genetic information on most fish species has been a major drawback for a more general application of the different proteomic technologies currently available. Also, many teleosts of interest in biological research and with potential application in aquaculture hold unique physiological characteristics that cannot be directly addressed from the study of small laboratory fish models. This review describes proteomic approaches that have been used to investigate diverse biological questions in model and non-model fish species. We will also evaluate the current possibilities to integrate fish proteomics with other "omic" approaches, as well as with additional complementary techniques, in order to address the future challenges in fish biology research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.