Abstract
The melanocortin system is a complex neuroendocrine signaling mechanism involved in numerous physiological processes in vertebrates, including pigmentation, steroidogenesis and metabolic control. This review focuses at one of its most fascinating function in fish, its regulatory role in the control of pigmentation, in which the melanocortin 1 receptor (Mc1r), its agonist α-melanocyte stimulating hormone (α-Msh), and the endogenous antagonist agouti signaling protein (Asip1) are the main players. Functional control of Mc1r, which is highly expressed in fish skin and whose activation stimulates melanin production and melanosome dispersion in fish melanophores, is considered a key mechanism for vertebrate pigment phenotypes. The α-Msh peptide, the most documented Mc1r agonist involved in pigmentation, is produced in the pituitary gland, activating melanin synthesis by binding to Mc1r in fish melanophores. Finally, Asip1 is the putative factor for establishing the evolutionarily conserved dorso-ventral pigment pattern found across vertebrates. However, we are just starting to understand how other melanocortin system components are acting in this complex regulatory network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.