Abstract
This study investigated the effects of dietary supplementation of fish oil on the signals of lipid metabolism involved in hepatic cholesterol and triglyceride influx and excretion in high-fat diet (HFD)-fed rats. Fish oil (FO) repressed body (HFD, 533 ± 18.2 g; HFD+FO, 488 ± 28.0 g, p < 0.05) and liver weights (HFD, 5.7 ± 0.6 g/100 g of body weight; HFD+FO, 4.8 ± 0.4 g/100 g of body weight, p < 0.05) in HFD-fed rats. Fish oil could also improve HFD-induced imbalance of lipid metabolism in blood, liver, and adipose tissues including the significant decreases in plasma and liver total cholesterol (TC) (plasma-HFD, 113 ± 33.6 mg/dL; HFD+FO, 50.0 ± 5.95 mg/dL, p < 0.05; liver-HFD, 102 ± 13.0 mg/g liver; [corrected] HFD+FO, 86.6 ± 7.81 mg/g liver, [corrected] p < 0.05), blood, liver, and adipose triglyceride (TG) (blood-HFD, 52.5 ± 20.4 mg/dL; HFD+FO, 29.8 ± 4.30 mg/dL, p < 0.05; liver-HFD, 56.2 ± 10.0 mg/g liver; [corrected] HFD+FO, 30.3 ± 5.28 mg/g liver, [corrected] p < 0.05; adipose-HFD, 614 ± 73.2 mg/g liver, [corrected] HFD+FO, 409 ± 334 mg/g of adipose tissue, [corrected] p < 0.05), and low density (HFD, 79.8 ± 40.9 mg/dL; HFD+FO, 16.6 ± 5.47 mg/dL, p < 0.05) and very-low-density (HFD, 49.7 ± 33.3 mg/dL; HFD+FO, 10.4 ± 3.45 mg/dL, p < 0.05) lipoprotein and the significant increases in fecal TC (HFD, 12.2 ± 0.67 mg/g feces; [corrected] HFD+FO, 16.3 ± 2.04 mg/g feces, [corrected] < 0.05) and TG (HFD, 2.09 ± 0.10 mg/g feces; [corrected] HFD+FO, 2.38 ± 0.22 mg/g feces, [corrected] p < 0.05) and lipoprotein lipase activity of adipose tissues (HFD, 16.6 ± 3.64 μM p-nitrophenol; HFD+FO, 24.5 ± 4.19 μM p-nitrophenol, p < 0.05). Moreover, fish oil significantly activated the protein expressions of hepatic lipid metabolism regulators (AMPKα and PPARα) and significantly regulated the lipid-transport-related signaling molecules (ApoE, MTTP, ApoB, Angptl4, ApoCIII, ACOX1, and SREBPF1) in blood or liver of HFD-fed rats. These results suggest that fish oil supplementation improves HFD-induced imbalance of lipid homeostasis in blood, liver, and adipose tissues in rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.