Abstract

The reduction of the fish oil acidity is a significant problem in the rendering industry, as the oil’s range of applications and market value strongly depend on this parameter. In particular, the lower the acidity, the larger the oil’s market value. This work aims to study the potential of enzymatic esterification for reducing the fish oil acidity, by converting the free fatty acids into esters. Thus, four commercial lipases were used and a parametric study was performed to identify the best operating conditions, varying the reaction temperature, enzyme/oil mass ratio and alcohol/FFA mass ratio. All experiments were performed in duplicate with a very good reproducibility of results. Results showed that Lipozyme TL 100L contributed to greater acidity reduction (75% from an initial acid value of 10–14 mg KOH/g oil) for esterification at 40 °C, using ethanol 96% v/v, enzyme/oil and alcohol/FFA mass ratios of 0.01 and 3.24 w/w, respectively, reaching 3.13 mg KOH/g oil of final acid value or 1.57% FFA content. The reaction kinetics were also studied and it was found that a second order rate law as a function of the alcohol and oil concentrations is more adequate, with 35.44 kJ/mol of activation energy and 1.94 × 103 L mol− 1 min− 1 of pre-exponential factor. In conclusion, this work shows that the enzymatic esterification to reduce the fish oil acidity is technically feasible, increasing its market value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call