Abstract

We aimed to investigate the impact of different high-fat diets containing fish oil on adiposity and white adipose tissue (WAT) function in mice, comparing the effects on epididymal (eWAT) and subcutaneous (sWAT) depots. For this, we used C57BL/6 male mice fed four types of diets for eight weeks: standard chow (SC), high-fat lard (HF-L), high-fat lard plus fish oil (HF-L + FO), and high-fat fish oil (HF-FO). The HF-L group had a greater body mass (BM) gain, insulin resistance, increased gene expression related to lipogenesis (CD36, aP2, SREBP1c, and FAS), decreased gene expression of perilipin in both eWAT and sWAT, and reduced expression of genes related to beta-oxidation (CPT-1a) and to mitochondrial biogenesis (PGC1alpha, NRF1, and TFAM) in eWAT and sWAT. On the other hand, the HF-L + FO and HF-FO groups showed a smaller BM gain and adiposity, and normalization of insulin resistance and lipogenic genes in both eWAT and sWAT. These animals also showed decreased perilipin gene expression and elevated expression of beta-oxidation and mitochondrial biogenesis genes in eWAT and sWAT. 'Beige' adipocytes were identified in sWAT of the HF-FO animals. In conclusion, fish oil intake has anti-obesity effects through modulation of both eWAT and sWAT metabolism in mice and is relevant in diminishing the BM gain, adiposity, and insulin resistance even in combination with a high-fat lard diet in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call