Abstract
Fish image segmentation can be considered an essential process in developing a system for fish recognition. This task is challenging as different specimens, rotations, positions, illuminations, and backgrounds exist in fish images. In this research, a segmentation model is proposed for fish images using Salp Swarm Algorithm (SSA). The segmentation is formulated using Simple Linear Iterative Clustering (SLIC) method with initial parameters optimized by the SSA. The SLIC method is used to cluster image pixels to generate compact and nearly uniform superpixels. Finally, a thresholding using Otsu’s method helped to produce satisfactory results of extracted fishes from the original images under different conditions. A fish dataset consisting of real-world images was tested. In experiments, the proposed model shows robustness for different cases compared to conventional work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.