Abstract

Predatory fish in the wild consume whole prey including hard skeletal parts like shell and bone. Shell and bone are made up of the buffering minerals calcium carbonate (CaCO3) and calcium phosphate (Ca3(PO4)2). These minerals resist changes in pH, meaning they could have physiological consequences for gastric acidity, digestion and metabolism in fish. Using isocaloric diets supplemented with either CaCO3, Ca3(PO4)2 or CaCl2 as non-buffering control, we investigated the impacts of dietary buffering on the energetic cost of digestion (i.e. specific dynamic action or SDA), gastric pH, the postprandial blood alkalosis (the “alkaline tide”) and growth in juvenile rainbow trout (Oncorhynchus mykiss). Increases in dietary buffering were significantly associated with increased stomach chyme pH, postprandial blood HCO3−, net base excretion, the total SDA and peak SDA but did not influence growth efficiency in a 21 day trial. This result shows that aspects of a meal that have no nutritional value can influence the physiological and energetic costs associated with digestion in fish, but that a reduction in the SDA will not always lead to improvements in growth efficiency. We discuss the broader implications of these findings for the gastrointestinal physiology of fishes, trade-offs in prey choice in the wild, anthropogenic warming and feed formulation in aquaculture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.