Abstract

<span>The field of wild fish classification faces many challenges such as the amount of training data, pose variation and uncontrolled environmental settings. This research work introduces a hybrid genetic algorithm (GA) that integrates the simulated annealing (SA) algorithm with a back-propagation algorithm (GSB classifier) to make the classification process. The algorithm is based on determining the suitable set of extracted features using color signature and color texture features as well as shape features. Four main classes of fish images have been classified, namely, food, garden, poison, and predatory. The proposed GSB classifier has been tested using 24 fish families with different species in each. Compared to the back-propagation (BP) algorithm, the proposed classifier has achieved a rate of 87.7% while the elder rate is 82.9%.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.