Abstract

Plastic is ingested by over 100 bird species and 40 fish species. Once ingested, plastic may release endocrine-disrupting plastic additives in the animal; however, amounts transferred are poorly characterized. We exposed 16 commonly ingested plastic items to fish and seabird laboratory gut mimic models using the digestive enzyme pepsin at pH 2 and shook them for 16 h at either 28 °C (in saltwater) for fish or 40 °C (in freshwater) for seabirds. Gut liquid was then evaluated for estrogen receptor activity using an in vitro cell line, and plastic-additive concentrations were quantified using ultrahigh-performance liquid chromatography/tandem mass spectrometry. Both seabird ( p < 0.0001) and fish gut conditions ( p < 0.0001) significantly enhanced the biological estrogenicity of expanded polystyrene, polyethylene shopping bag, and polypropylene string relative to controls, resulting in up to a 10.6-fold increase in estrogenicity. Out of 12 plastic additives analyzed, bisphenol A (BPA) (204 ± 129%) and diethylhexyl phthalate (DEHP) (175 ± 97%) concentrations were significantly increased in seabird gut conditions relative to control and butylbenzyl phthalate (BBP) (132 ± 68%) was significantly increased in fish gut conditions relative to control. BPA, DEHP, and BBP did not adequately account for the increase in biological estrogenicity, suggesting that uncharacterized plastic additives may have been enhanced by gut conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.