Abstract

We investigated the distributional patterns of shallow-water fish and their environmental correlates along a broad spatial scale encompassing estuarine and freshwater ecosystems. Marine-vagrant species were restricted to the sites under the influence of salinity intrusion, whereas estuarine-related and freshwater guilds were found along the entire estuarine–freshwater gradient. Primary- and secondary-freshwater fish guilds had the most widespread spatial distribution and comprised a major fraction of the total abundance and species richness. Abiotic factors correlated with fish abundance and composition along two main environmental axes, one related with variation in salinity, water transparency, and sediment granulometry and the other with the slope gradient. Species richness was significantly higher at the natural channel linking the estuarine- and freshwater-ecosystem, which probably was due to: (a) a steeper slope that favored the confluence of fish from the littoral ( 2 m) zones and (b) the sporadic inflow of saltwater that carried into this region several marine-related species. Although estuarine–freshwater ecotones are known to support few species, mainly salinity tolerant, our results suggest that habitat features and seasonal fish movement associated with salinity intrusion could lead to more diverse fish assemblages in this transitional zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call