Abstract

Fischer–Tropsch synthesis in Co/SiO 2 catalysts, which were prepared by mixed impregnation of cobalt (II) nitrate and cobalt (II) acetate, was studied under mild reaction conditions (Total pressure=1 MPa, H 2/CO=2, T=513 K). X-ray diffraction indicated that highly dispersed cobalt metal was the main active sites on the catalyst prepared by the same method. It was considered that the metallic crystallines, which were readily reduced from cobalt nitrate, promoted the reduction of Co 2+ to metallic a state in cobalt acetate by H 2 spillover mechanism during the catalyst reduction process. The reduced cobalt, from cobalt acetate, was highly dispersed one and remarkably enhanced the catalytic activity. The addition of a small amount of Ru to this type of catalyst remarkably increased the catalytic activity and the reduction degree. Its turn over frequency (TOF) increased but the selectivity of CH 4 was unchanged. However, when Pt or Pd were added into catalysts, they exhibited a higher selectivity of CH 4. Although Pt and Pd hardly exerted an effect on cobalt reduction degree, they promoted cobalt dispersion and decreased the value of TOF. Characterization of these bimetallic catalysts suggested that a different contact between Co and Ru, Pt or Pd existed. Ru was enriched on the metallic cobalt surface but, Pt or Pd dispersed well in the form of Pt–Co or Pd–Co alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.