Abstract
Ordered mesoporous carbon supported cobalt-based catalysts (Co/MC) were synthesized via incipient wetness impregnation with different amounts of furfuryl alcohol (FA) as carbon precursor. The characterizations of obtained Co/MC were subjected to N2 adsorption, XRD, XPS, TEM, H2-TPR, H2-TPD and H2-TPSR. The results indicate that the reducibility and dispersion of Co active species vary significantly due to the difference of FA amount. By simply tuning the FA content from 25 to 100 wt%, the reduction temperature of deriving metallic Co shifts gradually to lower. The catalytic performance of Co/MC was evaluated for Fischer–Tropsch (FT) synthesis. The observed FT activity exhibits a volcano-type curve with the amount of FA due to the effect of both reducibility and dispersion of active species. As the precursor concentration overweighs 50 wt%, the ability of CO to dissociate over the active surface and the selectivity to the C5+ products level off after experiencing an initial increase. Substantially, the catalysts with higher concentration of FA render the larger crystallites having an average size of more than 6 nm, which facilitates the CO hydrogenation by way of carbon chain propagation. It seems that the sample with FA content of 50 wt% is optimum in terms of FT activity and C5+ selectivity. By simply tuning the carbon precursor furfuryl alcohol (FA) content from 25 to 100 wt%, the textural property of mesoporous carbon varies significantly, which further induces the different reducibility and dispersion of Co active species and the temperature of deriving metallic Co shifts gradually to lower. The catalytic performance of as-synthesized catalysts was evaluated for Fischer–Tropsch synthesis (FTS). The observed FT activity exhibits a volcano-type curve with the amount of FA due to the effect of both reducibility and dispersion of active species. At the FA concentration of support over 50 wt%, the selectivity to the C5+ heavy molecular maintain invariant after experiencing an initial increase. It seems that the sample with respect to 50 wt% FA is optimum in terms of FT activity and C5+ selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.