Abstract

Synthetic fuels play an important role in the defossilization of future aviation transport. To reduce the ecological impact of remote airports due to the long-range transportation of kerosene, decentralized on-site production of synthetic paraffinic kerosene is applicable, preferably as a near-drop-in fuel or, alternatively, as a blend. One possible solution for such a production of synthetic kerosene is the power-to-liquid process. We describe the basic development of a simplified plant layout addressing the specific challenges of decentralized kerosene production that differs from most of the current approaches for infrastructural well-connected regions. The decisive influence of the Fischer–Tropsch synthesis on the power-to-liquid (PtL) process is shown by means of a steady-state reactor model, which was developed in Python and serves as a basis for the further development of a modular environment able to represent entire process chains. The reactor model is based on reaction kinetics according to the current literature. The effects of adjustments of the main operation parameters on the reactor behavior were evaluated, and the impacts on the up- and downstream processes are described. The results prove the governing influence of the Fischer–Tropsch reactor on the PtL process and show its flexibility regarding the desired product fraction output, which makes it an appropriate solution for decentralized kerosene production.

Highlights

  • The aviation sector is comparatively seen as the most difficult to decarbonize as there is no feasible short-term possibility for aircraft electrification [3], sustainable aviation fuels (SAF) based on biogenic raw materials and renewable energy represent an option to significantly decrease the emissions of the aviation sector

  • This paper describes the development of a Fischer–Tropsch reactor model as part of a future open source process simulation model based on Python, showing the importance of the FT reactor as the core of the PtL process

  • According to the general criteria that have to be met for a decentralized fuel supply, the power-to-liquid process was selected as the preferred option due to its flexible energy supply possibilities and minor impacts on land and water use in comparison to biomass-to-liquid processes

Read more

Summary

Introduction

The aviation sector accounts for around 11% of the energy consumption of the entire transport sector [2] and contributes significantly to the global greenhouse gas emissions. Even under the consideration of further technology developments and efficiency improvements, the aviation sector could emit 3 times the current amount of CO2 by 2050 if no actions are taken [3]. The aviation sector is comparatively seen as the most difficult to decarbonize as there is no feasible short-term possibility for aircraft electrification [3], sustainable aviation fuels (SAF) based on biogenic raw materials and renewable energy represent an option to significantly decrease the emissions of the aviation sector. SAF currently account for only about 0.1% of the total kerosene consumption [2]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.