Abstract
We researched the effect of single zinc or oxygen vacancy on the electronic and optical properties of V-doped ZnO. All calculations were performed by CASTEP in materials studio software. Total energy showed that an oxygen vacancy inclined to stay at the position far from vanadium (V). A zinc vacancy preferred to localize at the position near V. The V atom substitution for zinc (Zn) introduced spin-polarization at Fermi-level. Vanadium made electronic density of states moved to lower energy. Vanadium doping broadened the density of states peaks of pure ZnO. An oxygen or Zn vacancy also broadened the density of states peaks of V-doped ZnO. The V doping introduced optical properties at lower energy. An oxygen vacancy improved lower-energy optical properties much. Our calculation provided a reference for the preparation and applications of V-doped ZnO in optical fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.