Abstract

We researched the effect of single zinc or oxygen vacancy on the electronic and optical properties of V-doped ZnO. All calculations were performed by CASTEP in materials studio software. Total energy showed that an oxygen vacancy inclined to stay at the position far from vanadium (V). A zinc vacancy preferred to localize at the position near V. The V atom substitution for zinc (Zn) introduced spin-polarization at Fermi-level. Vanadium made electronic density of states moved to lower energy. Vanadium doping broadened the density of states peaks of pure ZnO. An oxygen or Zn vacancy also broadened the density of states peaks of V-doped ZnO. The V doping introduced optical properties at lower energy. An oxygen vacancy improved lower-energy optical properties much. Our calculation provided a reference for the preparation and applications of V-doped ZnO in optical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call