Abstract
Since the topological insulator was discovered, the investigation of topological properties has become the hot spot in condensed matter physics. In this paper, we study topological properties of chalcogenide compounds Ge2X2Te5 (X=Sb, Bi) crystals and their monolayer and bilayer films as well as the vertical uniaxial pressure induced topological quantum phase transitions in monolayer and bilayer films. The results show that for A-type crystal, the bulk structures of these two compounds are topological insulators, the monolayer structures of these two compounds are conventional metals, and bilayer structures are topological metals. There is no topological quantum phase transition in monolayer nor bilayer film under the uniaxial compression. While for B-type crystal, the bulk structures of these two compounds are conventional insulators, the monolayer Ge2Sb2Te5 is conventional metal, its bilayer structure as well as monolayer and bilayer of Ge2Bi2Te5 films is conventional insulator. All the B-type monolayer and bilayer films each undergo a topological quantum phase transition to the topological metals under the uniaxial compression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.