Abstract
Materials with negative/zero area compressibility (NAC or ZAC), which expand or keep constant along two directions under hydrostatic pressure, are very rare but of great scientific and engineering merits. Here, we investigate “wine-rack” architecture, which is the most prevailing for the pressure-expansion effect in materials, and identify that two allotropes (Ag3BO3-I and -II ) of Ag3BO3 have the ZAC and NAC effects, respectively, by the first-principles calculations. Structural analysis discloses that the competition between the contraction effect from the bond length/angle shrinkage and the expansion effect from the angle closing between O-Ag-O bars and the (a , b ) plane dominates the occurrence of ZAC/NAC, and the framework openness governs the competing balance in this system. This work deepens the understanding of “wine-rack” models and enriches the NAC/ZAC family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.