Abstract
As a promising anode material, TiO2(B) has attracted much attention in recent years due to its high power and capacity performances. First-principles calculations are performed here to reveal the electronic properties and the transport of lithium (Li) in the bulk TiO2(B) with and without atomic doping. It is found that a 4-fold coordinated O atom has the lowest formation energy and the smallest bandgap and is the atom that most easily forms an O-vacancy (Ov). In this work, a series of p-type (N, P, As), n-type (F, Cl, Br), and isoelectronic (S, Se, Te) dopants in TiO2(B) are studied. For n-type dopants, the substitution of the F atom has no significant effect on the electronic structure, which results in the lowest formation energy. This result demonstrates that the F atom can provide high intrinsic stability. Analysis of the insertion process of Li in doped TiO2(B) shows that N-doping is the most competitive choice because it not only introduces a lower bandgap of TiO2(B) but it also has the highest binding energy with Li. The advantage of N-doping is derived from the self-compensation effect. Also, three possible transport paths of Li in TiO2(B) were studied via the CI-NEB method. The results show that the energy barrier of all diffusion paths of F doping is lower than that of pure TiO2(B), where path 2 along the b-axis channel has the lowest energy (0.32 eV). This study is expected to shed some light on the electronic structures of TiO2(B) and the transport properties of Li in it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.