Abstract

A first-principles plane-wave pseudopotential method based on the density functional theory is used to investigate the dehydrogenation properties and the influence mechanism of Li4BN3H10 hydrogen storage materials. The binding energy, the density of states and the Mulliken overlap population are calculated. The results show that the binding energy of crystal has no direct correlation with the dehydrogenation ability of (LiM)4BN3H10(M=Ni,Ti,Al,Mg). The width of band gap and the energy level of impurity are key factors to affect the dehydrogenation properties of (LiM)4BN3H10 hydrogen storage materials: the wider the energy gap is, the more strongly the electron is bound to the bond, the more difficultly the bond breaks, and the higher wile the dehydrogenation temperature be. Alloying introduces the impurity energy level in band gap, which leads the Fermi level to enter into the conduction band and the bond to be weakened, thereby resulting in the improvement of the dehydrogenation properties of Li4BN3H10. It is found from the charge population analysis that the bond strengths of N—H and B—H are weakened by alloying, which improves the dehydrogenation properties of Li4BN3H10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.