Abstract

The structural, mechanical and electronic properties of W1−xZrx (x = 0.0625, 0.125, 0.1875, 0.25, 0.5) are systematically investigated by means of first-principles calculation. The total-energy calculations demonstrate that the W–Zr binary substitutional solid solution remaining bcc structure can be formed at an atom level. In addition, the derived bulk modulus (B), shear modulus (G), Youngʼs modulus (E) for each of W–Zr alloys decrease gradually with the increase of Zr concentration, suggesting that W alloying with higher Zr concentration becomes softer than pure W metal. Based on the mechanical characteristic B/G ratio, Poissonʼs ratio υ and Cauchy pressure , all W1−xZrx alloys are regarded as ductile materials. The ductility for each of those materials is improved with the increase of Zr concentration. The calculated density of states indicates that the ductility of W1−xZrx is due to the fact that the bonding in the alloy becomes more metallic through increasing the Zr concentration in tungsten. These results provide incontrovertible evidence for the fact that Zr has a significant influence on the properties of W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.