Abstract

First-principles linear combination of atomic orbitals method within the framework of density functional theory is applied to study structural and electronic properties of tetragonal and cubic phases of Cd 3P 2. The equilibrium lattice constants and bulk moduli deduced from Murnaghan equation of state for the two structures are in good agreement with the experiment. Enthalpy–pressure curves do not show possibility of pressure induced structural phase transitions between the two structures up to 80 GPa. Electronic band structures and Mulliken population analysis for the two structures are presented. It is found that tetragonal Cd 3P 2 has direct band gap 1.38 eV while cubic structure shows indirect band gap of 0.35 eV. The branch point energies for the tetragonal structure lie below the conduction band while for cubic structure it lies in the conduction band. Mulliken population analysis shows that occupancies in 5sp, 6sp and 5d states of Cd and 3sp and 4sp states of P are largely affected on bond formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.