Abstract

An ab initio linear combination of atomic orbitals method founded on density functional theory is applied to study the structural and bonding properties of vanadium carbide and niobium carbide. We present structural properties, namely, first-principles total energies, equilibrium lattice constants, bulk moduli and their pressure derivatives, together with the x-ray structure factors. Two generalized correction schemes—P86 and PW92—are applied to treat correlation. P86 gives a favourable ground state compared with the PW92. The computed equilibrium lattice constants and bulk moduli of the two compounds are compared with available experimental data. The x-ray structure factors for a few reflection planes are also reported. Comparison with experiment could be done only for niobium carbide. More refined measurements on x-ray structure factors for both compounds are required. We also present the autocorrelation functions derived from the ground-state momentum density. The electronic behaviour and bonding properties are discussed in terms of absolute and anisotropies in the directional autocorrelation functions. Our findings on structural and bonding parameters are well in accordance with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call