Abstract

Phosphorene and its isoelectronic counterparts, such as GeS, GeSe, SnS and SnSe monolayers, show great potential in electrical and sensing applications. Here, we study the SO2 sensing properties of phosphorene and its isoelectronic counterparts by first-principles calculations. Results predict that the SO2 molecule as electron acceptor holds high adsorption strength with the five monolayer substrates, especially for SnS and SnSe monolayers. Moreover, the electronic properties of the five substrates can be modified by the SO2 molecule, together with distinct charge transfer, rendering them promising for application asa high-performance gas sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.