Abstract

The photoconductivity of BaTiO 2.5 with oxygen vacancy has been studied by the linear muffin-tin orbital method in the atomic sphere approximation (LMTO-ASA). The ground-state structure of BaTiO 2.5 is obtained by minimization of the total energy. The partial densities of states show that the occupied states at the bottom of the conduction band have primarily Ti d orbital character. The photoconductivity shows that two novel features, in the low energy side, can be attributed to the intraband transition of free electronic carriers in the vicinity of the Fermi level and the interband transition of the Ti 3d( yz) related band states, to the Ti 3d( xy, xz) related band states, respectively. In addition, it is also found that the anisotropy of photoconductivity is enhanced because of the introduction of oxygen vacancy. The system can show the conductive behavior of electronic carriers, which is qualitatively in agreement with a recent experimental finding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.