Abstract

The lithium absorption energies and electronic structures of boron- or silicon-doped single-walled carbon nanotubes (SWCNT) were investigated using first-principles calculations based on the density-functional theory. As B and Si doping carbon nanotubes, the lithium atom adsorption energies decrease. The effects of B and Si doping are different on the lithium atomic adsorption. B-doping forms an electron-deficient structure in SWCNT. While the Si-doping forms a highly reactive center. The calculations suggest that boron- and silicon-doping in SWCNT will improve Li absorption performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.