Abstract

The density functional theory calculation has been conducted to investigate the structural and electronic properties, including the adsorption energies, bond structures, work functions, charge transfer behaviors, and density of states for pristine, Ni-, and Fe-embedded capped (5, 5) single-walled carbon nanotubes (SWNTs) with different coverage of atomic hydrogen, oxygen, and nitrogen adsorptions. Ni or Fe embedment enhances the adatom-SWNT interactions significantly for three kinds of gas atoms with the increases of the adsorption energies. The SWNT work function drops with H adsorption, while Ni or Fe embedment assists further the reduction. When increasing the coverage, the adsorption energy decreases and the work function climbs for O adsorption, but the nitrogen adsorption energy increases. The Bader charge transfer analysis implies that the cap possesses higher oxygen reduction activities than the tube, and the density of states analysis shows that Ni or Fe embedment deepens the C-adatom hybridizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.