Abstract

The electronic structure, absorption spectra, and thermodynamic properties of crystalline styphnic acid and its metal salts (potassium, barium, and lead styphnates) have been studied using density functional theory within the local density approximation. The results show that the metal states affect the electronic structure of styphnic acid by modifying the density of states of the O atoms of hydroxyls. The C-O bond fission may be favorable in the decomposition of styphnic acid and its metal salts. The absorption spectra of the four crystals display a few strong bands in the fundamental absorption region. Compared with styphnic acid, potassium, barium, and lead styphnates decrease its enthalpy, entropy, free energy, and heat capacity as the temperature increases. However, the differences of the thermodynamic functions between each metal salt are very small. As the temperature increases, the decomposition reactions of the four crystals are more and more favorable thermodynamically. It is also found that there is a relationship between the band gap and impact sensitivity for the four crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.