Abstract

Structural, elastic, optical, thermodynamical, and electronic properties of yttrium oxide compound in cubic phase have been studied using the full‐potential augmented plane waves (FP‐LAPW) within density functional theory (DFT) framework. Four different approximations were used for exchange‐correlation potentials terms, comprised Perdew–Burke–Ernzerhof generalized parameterization of gradient approximation (GGA‐PBE), Wu–Cohen (WC‐GGA), local‐density approximation (LDA), and new approximation modified Becke and Johnson (mBJ‐GGA). The structural properties such as equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method. Moreover, Elastic constants, Young's modulus, shear modulus, Poisson's ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature, and Grüneisen parameters have been calculated. Obtained structural, elastic and other parameters are consistent with experimental data. Moreover pressure dependence of the elastic moduli was studied. From electronic calculations, it has been found that the band gap was 5.7 eV at Г point in the Brillouin zone usingmBJ‐GGAapproximation. Optical properties, such as the dielectric function, refractive index, extinction index, and optical band gap, were calculated for radiation up to 14 eV. In addition, the unique type of bonding inY2O3was discussed by three method including effective charge, B/G ratio, and charge density distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.