Abstract

The search for contact materials with low contact resistance and tunable Schottky barrier (SB) height of two-dimensional (2D) materials is important for improving the electronic performance. Inspired by the recently synthesized metallic Janus MoSH, this study employs first-principles calculations to investigate the electronic structure, mechanical properties, and interface characteristics of Janus MoSH/GaN and MoHS/GaN van der Waals (vdW) heterostructures. We find that both heterostructures exhibit isotropic mechanical properties and form p-type Schottky barrier contacts (p-ShC) and the SB height of MoHS/GaN is smaller than that of the MoSH/GaN heterostructure. The variation in SB height and contact type under biaxial strain and electric field is also studied for both vdW heterostructures, respectively. Compared to the MoSH/GaN heterostructure, the MoHS/GaN heterostructure can transition to Ohmic contact (OhC) under biaxial strain and electric field, making the S-face contact of MoSH with GaN a more effective contact approach. These findings could provide a new pathway for the design of controllable Schottky nanodevices and high-performance electronic devices on GaN-based vdW heterostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call