Abstract
The surfactant effect of Au in ZnO nanostructures growth is studied using first-principles slab calculations based on density functional theory. The atomic structure and electronic properties of one monolayer of Au atoms on polar ZnO surfaces are examined. It is found that (1) one monolayer (ML) of Au capping layer on the ZnO polar surfaces may modify the growing properties of ZnO nanostructures by enhancing the binding energy by 0.41 eV/atom for Zn adsorption on the polar surfaces; (2) the Au adlayer on the polar ZnO surfaces seems more active for the adsorption of Zn atoms, which may be at the very heart of the effect that Au acts as catalyst for the growth of the ZnO nanostructures; and (3) total energy calculations show that the gold on-top geometry is energetically favorable than the gold diffused geometry, which may be useful to understand the phenomenon that Au particles are only found at the end of ZnO nanostructures during the growth process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.