Abstract
Two types of magnetoresistance (MR), i.e., tunnel magnetoresistance (TMR) and current perpendicular to plane giant magnetoresistance (CPP-GMR), are theoretically discussed for systems with half-metallic (HFM) Co-based full Heusler compounds. In TMR, the non-collinear spin structure at the Co2MnSi(CMS)/MgO(001) interface that results from thermal spin fluctuations significantly reduced the TMR ratio at room temperature (RT). Enhancement of the exchange stiffness of CMS/MgO was essential to suppress the reduction in TMR at RT. Furthermore, it is proposed that inserting of a B2-CoFe layer between CMS and MgO is a promising way to enhance the interface exchange stiffness constant. In CPP-GMR, the interface spin asymmetry γ in the Valet-Fert model was essential to enhance GMR at RT, because the temperature dependence of γ in experiments was much larger than that of the bulk spin asymmetry β. I showed that the experimental CPP-GMR ratio increases with the decrease in the theoretical resistance-area product RPA, which is roughly consistent with the RP dependence of γ. This means that matching of the conductive channel between HMF and a non-magnetic metallic spacer is a key parameter to enhance γ. These findings will be very important for room temperature spintronics devices applied in future artificial intelligence hardware.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.