Abstract

We perform density functional theory studies to investigate structural and electronic properties of the (5,5) boron nitride nanotubes (BNNTs) with surfaces and ends functionalized by thiol (SH) and hydroxyl (OH) groups. The exchange-correlation energies are treated according to the functional of Hamprecht-Cohen-Tozer-Handy within the generalized gradient approximation (HCTH-GGA). We use the base function with double polarization DNP. To determine the (5,5) BNNT-SH and (5,5) BNNT-OH relaxed structures the minimum energy criterion is applied considering six different geometries depending upon the SH and OH functional groups orientation: (C1) The adsorbed functional group is oriented toward the N atom, (C2) the functional group is oriented toward the B atom, (C3) the functional group is at the central hexagon of the BNNT surface. The (C4) fourth and (C5) fifth configurations are formed by allowing bonds (of S or O) with B or N atoms at one end of the nanotube. (C6) The sixth geometry is obtained by placing the functional group at the center of one end of the BNNT. The (5,5) BNNT-SH system, in vacuum, suffers a semiconductor to metal transition while the (5,5) BNNT-OH system retains the semiconductor behavior. When structures are solvated in water these systems behave as semiconductors. The polarity increases as a consequence of the functional group-nanotube interactions no matter if they are in vacuum or in solvation situation, which indicates the possible solubility and dispersion. According to the work function the best option to construct a device is with the BNNT-OH system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.