Abstract
We overview the nonequilibrium Green function combined with density functional theory (NEGF-DFT) approach to modeling of independent electronic and phononic quantum transport in nanoscale thermoelectrics with examples focused on a new class of devices where a single organic molecule is attached to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from the ZGNR electrodes, so that their overlap within the molecular region generates a peak in the electronic transmission around the Fermi energy of the device. Additionally, the spatial symmetry properties of the transverse propagating states in the semi-infinite ZGNR electrodes suppress hole-like contributions to the thermopower. Thus optimized thermopower, together with diminished phonon thermal conductance in a ZGNR|molecule|ZGNR inhomogeneous heterojunctions, yields the thermoelectric figure of merit ZT≃0.4 at room temperature with maximum ZT≃3 reached at very low temperatures T≃10 K (so that the latter feature could be exploited for thermoelectric cooling of, e.g., infrared sensors). The reliance on evanescent mode transport and symmetry of propagating states in the electrodes makes the electronic-transport-determined power factor in this class of devices largely insensitive to the type of sufficiently short organic molecule, which we demonstrate by showing that both 18-annulene and C10 molecule sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can search for molecules that will further reduce the phonon thermal conductance (in the denominator of ZT) while keeping the electronic power factor (in the nominator of ZT) optimized. We also show how the often employed Brenner empirical interatomic potential for hydrocarbon systems fails to describe phonon transport in our single-molecule nanojunctions when contrasted with first-principles results obtained via NEGF-DFT methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Computational Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.