Abstract

The quantum transport in S3 clusters sandwiched between Au electrodes was investigated using density functional theory and nonequilibrium Green's function method. Five different configurations were considered, and the equilibrium conductance and the projected density of states were obtained at optimal positions. Results revealed local minima for two strain chains connected to the pyramidal electrodes at the top site and a triangular S3 open chain linked to the pyramidal electrodes at the top hollow site. The relationship between conductance and external bias voltage was also calculated. Transmission of straight chains was determined by resonance and strongly affected by the bias voltage. Transport of top-hollow configuration was dominated by several closely spaced and broad molecular orbitals; hence, the transmission coefficient was almost flat around the gold Fermi level. The calculations proved that the coupling morphologies of S3 clusters connected with the electrodes significantly affected the electrical transport properties of nanoscale junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call