Abstract

Two-dimensional (2D) ferrovalley semiconductor materials with intrinsic spontaneous valley polarization offer new prospects for valley electronics applications. However, there are only a limited number of known promising candidate materials, which are in urgent need of expansion. In particular, the room-temperature 2D ferrovalley materials are still lacking. In this study, we predicted novel 2D ferromagnetic CeX2 (X=Fe,Cl,Br) monolayers by using first-principles calculations. The monolayer CeX2 is a bipolar magnetic semiconductor with robust dynamical and thermal stabilities, and easy magnetization direction is in the plane. Due to the simultaneous breaking of both inversion symmetry and time-reversal symmetry, the monolayer CeX2 is exhibiting a spontaneous intrinsic valley polarization when magnetized along the out-of-plane z direction. Interestingly, monolayer CeBr2 is a spontaneous intrinsic ferrovalley material with a room temperature of 334 K and an obvious valley splitting of 32 meV. Due to the non-zero valley-contrast Berry curvature, monolayer CeBr2 is a candidate materials for realizing the anomalous valley Hall effect under a suitable applied electric field. Our study provides a theoretical reference for the design of valley electronic devices with anomalous valley Hall effect based on hole-doped CeX2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.