Abstract

[Fe4S4] or [4S-4Fe] clusters are responsible for storing and transferring electrons in key cellular processes and interact with their microenvironment to modulate their oxidation and magnetic states. Therefore, these clusters are ideal for the metal node of chemically and electromagnetically tunable metal-organic frameworks (MOFs). To examine the adsorption-based applications of [Fe4S4]-based MOFs, we used density functional theory calculations and studied the adsorption of CO2, CH4, H2O, H2, N2, NO2, O2, and SO2 onto [Fe4S4]0, [Fe4S4]2+, and two 1D MOF models with the carboxylate and 1,4-benzenedithiolate organic linkers. Our reaction kinetics and thermodynamics results indicated that MOF formation promotes the oxidative and hydrolytic stability of the [Fe4S4] clusters but decreases their adsorption efficiency. Our study suggests the potential industrial applications of these [Fe4S4]-based MOFs because of their limited capacity to adsorb CO2, CH4, H2O, H2, N2, O2, and SO2 and high selectivity for NO2 adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call