Abstract
We present a first-principles thermodynamic approach to provide an alternative to the Langevin equation by identifying the deterministic (no stochastic component) microforce F_{k,BP} acting on a nonequilibrium Brownian particle (BP) in its kth microstate m_{k}. (The prefix "micro" refers to microstate quantities and carry a suffix k.) The deterministic new equation is easier to solve using basic calculus. Being oblivious to the second law, F_{k,BP} does not always oppose motion but viscous dissipation emerges upon ensemble averaging. The equipartition theorem is always satisfied. We reproduce well-known results of the BP in equilibrium. We explain how the microforce is obtained directly from the mutual potential energy of interaction beween the BP and the medium after we average it over the medium so we only have to consider the particles in the BP. Our approach goes beyond the phenomenological and equilibrium approach of Langevin and unifies nonequilibrium viscous dissipation from mesoscopic to macroscopic scales and provides new insight into Brownian motion beyond Langevin's and Einstein's formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.