Abstract

We investigate the structural, elastic, and electronic properties of rutile-type SnO2 by plane-wave pseudopotential density functional theory method. The lattice constants, bulk modulus and its pressure derivative are all calculated. These properties at equilibrium phase are well consistent with the available experimental and theoretical data. Especially, we study the pressure dependence of elastic properties such as the elastic constants, elastic anisotropy, aggregate acoustic velocities and elastic Debye temperature Θ. It is concluded that this structure becomes more ductile with increasing pressure up to 28GPa. Moreover, our compressional and shear wave velocities VP=7.02km/s and VS=3.84km/s, as well as elastic Debye temperature Θ=563K at 0GPa compare favorably with the experimental values. The pressure dependences of band structures, energy gap and density of states are also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.