Abstract

In this paper the elastic and thermodynamic properties of the cubic zinc-blende structure BeS at different pressures and temperatures are investigated by using ab initio plane-wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The calculated results are in excellent agreement with the available experimental data and other theoretical results. It is found that the zinc-blende structure BeS should be unstable above 60GPa. The thermodynamic properties of the zinc-blende structure BeS are predicted by using the quasi-harmonic Debye model. The pressure-volume-temperature (P - V - T) relationship, the variations of the thermal expansion coefficient α and the heat capacity Cv with pressure P and temperature T, as well as the Grüneisen parameter-pressure-temperature (γ - P - T) relationship are obtained systematically in the ranges of 0-90GPa and 0-2000K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.