Abstract

We have investigated the electronic structure and half-metallic ferromagnetism in zinc blende phase of Be1−x V x M (M=S, Se, Te) at concentration x=0.125 by employing a first-principles calculations within the framework of density functional theory (DFT) based on the linearized augmented plane wave method (FP-LAPW), as implanted in the WIEN2k code with generalized gradient approximation functional proposed by Wu and Cohen (WC-GGA). The electronic properties exhibit half-metallic behavior. So the density of states shows the hybridization between the p (S, Se, Te) and 3d (V) states that creates the antibonding states in the gap, which stabilizes the ferromagnetic ground state associated with the double-exchange mechanism, whereas the spin polarized band structures depict half-metallic gap that increases from Be0.875V0.125S to Be0.875V0.125Se to Be0.875V0.125Te. These compounds are robust half-metallic ferromagnets with spin polarization of 100 % and predicted to be potential candidates for spin injection applications in spintronic devices. Therefore, our predictions require an experimental confirmation in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call